Report No. 1466

## German Transpondor Me teorological Instrument

A new tope of German meteorological instrument was found near Tonbridge, Kent on $9 / 12 / 43$.

The equipment consists of:-
a) The transmitter - receiver unit as described in the accompanying National Physical Laboratory report. Two photographs of this unit and the circuit diagram are attached to this report.
b) The balloon. This weighs 1,250 grams. and is somewhat larger than is usual for radiosondes.
c) The parachute. This is of peculiar design. It is small (21") for the weight of the instrument. It is in alternate black and white segments. Two wooden rods are attached inside the parachute and are hinged at the apex. It is presumed that this arrangement ensures the opening of the parachute.
d) Reward label. This is apparently for usenithin Reich territory only, as this tyre of label is not found attached to radiosondes released in occupied countries.

Information derived from this card is as follows:-
i) Apparatus No. 141768 (which does not agree with any number found on the instrument).
(ii) Date of ascent 6/12/43.
(iii) The address to which the instrument should be roturnod:-

An as Acronautische Observatorium
der Reichamts fur Wetterdienst
Lindenberg.

Report of the National Physical Laboratory (Dr. H. G. Hopkins).

## 1. General

This Wehrmacht instrument fell in England attached to a parachute and a partially inflated balloon: an associated label indicated that a meteorological station in Germany was interested in its return, although no meteorological elements (eeg. barometer or thermometer) wore recovered wi th the instrument.

Briefly the instrument is a combined receiver and crystal controlled transmitter connected so as to form a transpondor. A low frequency oscillator is included in the instrument and the output from this is fed to the modulating grid of the transmitter in series with the audio frequency output from the receiver. The low frequency oscillator is normally quiescent, but the circuit arrangements are such that it nay be used in conjunction with a separate barometer or thomometer to indicate when the balloon passes definite pressure or temperature Icvcls.

It therefore appears that the instrument is used for wind finding purposes, the transpondor in conjunction with a modulated ground transmitter being used to measure slant range, while height is given by a separate barometer associated with the balloon low frequency oscillator: alternatively, height measurements may be derived from ricasurements of angle of elevation-made-with-a beaned ground transmitter.

## 2. 1. Mechanical descrintion

The instrument is made from thin aluminum sheets on which the various camponents are mounted: the batturies clip to a mall bracket running the length of one side of the assorably. $A^{\prime}$ cylinder $6^{\prime \prime}$ in diometer by $8^{\prime \prime}$ in length would contain the equipment and batteries. It seems unlikely that the instrument rould be sent alof't without same form of protecting cover, but none was recovored. From the ends project aluminium cylindircal cases $1 \frac{1}{2}{ }^{\prime \prime}$ dianctor by $3{ }^{3 \prime \prime}$ lone, which sorve as conveniont handling posts and along the axes of which pass insulated tubes containing the leads feeding the receiving and transmitting aerials. The latter is a half wave flexible stranded stecl wirc which also corries the instrument on the parachutc; the receiver acrial was not rccovcred, but probably consists of a short rod projecting axially from the lower handling post.

The instrument included transmittine aeriol and the part of the battery pack recovorcl woichs $2 \frac{1}{2}$ lbs; the all up weight of the instrment at launch, includine itans not recovered, is probably about 3 Ibs.

### 2.2. Electrical descrintion

Figure 1 shows the circuit diagram of the equipment tocether with other relcvant information.

The recciving aeriol is inductively coupled to a super-regencrative detector (IS3 dircctly hoated diode triode) operating at $285 \mathrm{Mc} / \mathrm{s}$; quench voltages are derived from a $100 \mathrm{kc} / \mathrm{s}$. (approx.) oscillator which uses one half of onc of the DDD11 double triodes. The band width of the detector for a large sicnal input is about $10 \mathrm{Mc} / \mathrm{s}$. There is no direct connection between the triode and dio portions of the LS3; however, audio frequency output from the triode super-recenerative detector is passed on to the audio frequency armlifier staces from the diode. Both triodes of the other DDD11 are wired "in cascade to form a two stace resistance capacity armlifice, at the input torminals of which is connected a filter having a sharp accentance peak at $7.5 \mathrm{kc} / \mathrm{s}$., and which has high attenuation for frequencies above about $15 \mathrm{kc} / \mathrm{s}$. The amplifier alone will pass frequencies up to at least $40 \mathrm{kc} / \mathrm{s}$., so that the filter at its inmut terminals serves to suppross quench frequency voltages and to accentuate audio frequency voltaces centred around $7.5 \mathrm{kc} / \mathrm{s}$; these are passed on to the suppressor grid of the RL2P3 crystal controlled transmitter valve. It is interesting to note that the $7.5 \mathrm{kc} / \mathrm{s}$. filter incorporates ceramic condenscrs of interestine desicn which have probably been chosen to ensure a lrass characteristic sonsibly independent of tamperature changes. This point is discussed in greater detail in Section 3.

The gain of the amlifier stage is held rouchly constant as the H.T. batterics mun down by means of a bleeder resistance connected across the G. B. supply to the armlifier: in this way the bias will gradually fall to conform with the gradual reduction of H.T. voltage with time of fliŋht.

The other triode portion of the DDD11 quench valve is arranced as a $3 \mathrm{kc} / \mathrm{s}$. oscillator which is normally quiescent due to the -20 volts of bias on its grid. This bias is romoved when the tags $T$ are short circuited, and it is succested that a convential Geman baro-switch or thermoncter is connected across thosc teminals; while such an instrument was not recovered, examination of the tags showed that leads had in fact been connected to the tags and which might have joined to an external barometer or themometer unit. If this explanation of the $3 \mathrm{kc} / \mathrm{s}$. oscillator is correct, then the circuit is such that a $3 \mathrm{kc} / \mathrm{s}$. dash of a few seconds duration would be transmitted at definite pressure or temperature levels.

The sockets labclled $A$ and $B$ in the circuit diagram provide $3 \mathrm{kc} / \mathrm{s}$. output and are protected by a cover plate during flight: they are probably used during the calibration of the meteorological element and obviate the need for a receiver during this process.

The transmitting pentode is arraneed in a conventional crystal controllod R.F. oscillator circuit operating at $26.87 \mathrm{Mc} / \mathrm{s}$. and energizes the half wavc aerial through a condenser tapped down on the tank output circuit. It is estimated that the radiated power is of the order of 100 m . watts.

The power supply for the transmitter is derived fron three different types of coll. The L.T. surnly consists of four two volt units of nomal German radiosonde type joincd in parallel while the H.T. voltage is supplied by conventional simil dry cells. Grid bias voltages are derivcd from very small dry colls each sonarately mounted in a plastic cylinder measuring $7 / 16^{\prime \prime}$ diameter by $9 / 16^{\prime \prime}$ long. The cardboard box containing the H. T. and G. B. battorics ricesurcs $3 \frac{7}{6} " x 7^{\prime \prime} x 1^{\prime \prime}$ deep, and supports a smallor cerdboard box containing the I.T. cclls.

A colour-coded cable joins the batteries to a large multi-clectrode plug which in turn plucs into a socket on the ins truments assonbly.

## 3. Test work

The power sumply was not recovored complete; the voltages allocatcd to the various circuits show in Figure 1 were arrived at from considcration of battory box size and from the circuit arrangenents.

The approxinatc currents taken by the various component parts of the equipment under the conditions shown in the figure are dotailed below.

| Valve | Function | $\begin{aligned} & \text { Heater } \\ & \text { volrs } \end{aligned}$ | $\begin{aligned} & \text { Heater } \\ & \text { current } \\ & \text { (amps.) } \end{aligned}$ | H.T. current (milliamps.) |
| :---: | :---: | :---: | :---: | :---: |
| LS 3 | Detector | 2.0 | 0.07 | 2.5 |
| DDD11 | Amplificr | 1.4 | 0.1 | 1.0 |
| DDD11 | $\begin{aligned} & \text { Quench } / 3 / \mathrm{kc} / \mathrm{s} \text {. } \\ & \text { oscillator } \end{aligned}$ | 1.4 | 0.1 | $\begin{aligned} & 0.8\left(\mathrm{v}_{\mathrm{g}}=-20\right): \\ & 1.4\left(\mathrm{v}_{\mathrm{g}}=-1.5\right) \end{aligned}$ |
| RL2P3 | Transmitter | 2.0 | 0.07 | 8.0 |

It should perhaps be stressed that the DDD11 tubes ermloy 1.4 volt heaters, the voltacco being dropped to this value by means of a suitable series resistance.

It was at first supposed that the $3 \mathrm{kc} / \mathrm{s}$. oscillator was locked by an incoming carrier 1.0 dulated with a strong $3 \mathrm{kc} / \mathrm{s}$. component, or that it provided half sinc wave modulation from a pulse input. This view was not supported by the following facts.
(a) The voltage available from the receiver alone at $3 \mathrm{kc} / \mathrm{s}$. for modulation purposes was not markedly less than that provided by the $3 \mathrm{kc} / \mathrm{s}$. oscillator. In othor words, no triggering or locking action would result in a worthwhile irmpovement in modulation percentage.
(b) The $3 \mathrm{kc} / \mathrm{s}$. oscillator would not lock readily to a $3 \mathrm{kc} / \mathrm{s}$. voltage derived from the receiver.
(c) The peak in the roceiver characteristic at $7.5 \mathrm{kc} / \mathrm{s}$., the use of the soldering tags $T$ in the $3 \mathrm{kc} / \mathrm{s}$. oscillator grid circuit, and the method of using the 20 volts grid bias were all unexplained.

In view of these difficultics, the bchaviour of the equipment when receiving
receiving a carrior modulated at $7.5 \mathrm{kc} / \mathrm{s}$. was invostigated in detail. The exvaination lea to the conclusion that a received sienal fron a ground transmitter on $285 \mathrm{lic} / \mathrm{s}$. molulated at $7.5 \mathrm{kc} / \mathrm{s}$. is used directly to modulate the $26.87 \mathrm{Mc} / \mathrm{s}$. bolloon transnittor and that the $3 \mathrm{kc} / \mathrm{s}$. oscillator is used to indicate when sone other instrunent connected across the soldering tags $T$ has a short circuited output inpedancc. The obvious use for the complete balloon bornc cquignent in conjunction with the ground transnitter is for radio wind findinc purposes, the rance from the cround tranmitter to the balloon being derived from a comparison of the phase of the outgoing $7.5 \mathrm{kc} / \mathrm{s}$. modulation with that of the modulation on the carrior "reflected" by the balloon apparatus: the height of the balloon would be given by a baroswitch connected across $T$.

## Points supporting this viow are:

(a) $7.5 \mathrm{kc} / \mathrm{s}$. is a convcniont modulation frcquency to use for ranging purposes as a corpletc phase cycle measured at the ground tranmitter between the outeoine and retumed modulation is equivalent to a chance in slant range of 20 kms .
(b) The I.F. amplification of the recoiver is designed to be highest at $7.5 \mathrm{kc} / \mathrm{s}$.
(c) The overall phase transfer characteristic of the balloon equipnent at $7.5 \mathrm{kc} / \mathrm{s}$. is quitc stable with respect to changes in supply voltaces and termperaturc: further the termoraturc cocfficient of the transfer ancle has been arranged to compensate vory largely for the supply voltage chances.

This point may be seen from the followinf firures: in all cases a lead of the outcroine modulation voltage from the balloon transmitter with respect to that arrivine at the brlloon is taken as a positive phase angle.

Phasc coefficient with respect to H.T. variation - $2^{\circ}$ per volt. Phase coefficiont with respect to L.T. variation - $200^{5}$ per volt.
(It should be noted, however, that the instrment does not operate if the I.T. falls by more than 0.1 volt.)

Phase coefficient with respect to tenperature) $+0.75^{\circ}$ per ${ }^{\circ} \mathrm{C}$
(average over range +12 to $-60^{\circ} \mathrm{C}$.)
Providing the voltace of the L.T. units remains reasonably stable with temperature, it seeris likely that the systematic rance error will be small in practicc and will have a magnitude of the order of 50 metres per kilometre height of the balloon.

Durinc the low temperature tests under constant voltace conditions, it was observed that the receiver and transmittor ceasc to opurate at about -60 and $65^{\circ} \mathrm{C}$ respoctively.

The termerature coefficiont of the transnitter crystal is $+20 \times 10^{-6}$ per ${ }^{\circ} \mathrm{C}$.

## 4. Nature of sicnals likely to be intercepted

On $285 \mathrm{Mc} / \mathrm{s}$. a carrier modulated - probably continuously - at $7.5 \mathrm{kc} / \mathrm{s}$. nay be interconted, although this is rendered improbable by the likelihood that the ground transmitter is bearned on to the balloon.

On $26.87 \mathrm{Iic} / \mathrm{s}$. a crystal controlled carricr modulated - probably continuously - at $7.5 \mathrm{kc} / \mathrm{s}$., on which is superposed a long $3 \mathrm{kc} / \mathrm{s}$. dash at infrequent and irregular intorvals, may be intercoptcd in this country particularly when winds are casterly.

## 5. Nature of ground equipment

The transmitter probably utilizes an array rotatable in azimuth: there is no evidence to show whether it can rotate in the vertical plane. The $7.5 \mathrm{kc} / \mathrm{s}$. Phase comparator for measuring slant rance may bo of goniometer type.

It sears, that or the various alternatives for measuring the other parameters necessary for wind velocity measurcanents the rue tho described below is the roost likely.

Determine azinuth by direction finder observations on the 26.87 licks. balloon traneriitter. Possibly an Adcock is used here, al though some form of split method could be employed. Determine the height of the balloon by a baroswitch connected to the $3 \mathrm{kc} / \mathrm{s}$. oscillator in the balloon instrument. (There is a possibility that angular neasuranents are carried out by using sone for of switched lobe technique on the ground transmitter. This seers rather unlikely, however, in view of the A.V.C. characteristics of the super-regenerative balloon borne receiver which would make the equisignol zone unreasonably large.)

It is impossible to say whether the beaned transmitting array is mounted directly on the directional receiver, but it seams very likely that these two major units are arranged so as always to "face" in the some direction: in this way the direction finder operator will automatically keep the transmitting array aliened in the azimuth of the balloon and so achicve the naxinum "reflected" signal from the balloon transponder.

At the moment nothing is known of any ground installation such as is suggested in the II.P. I. report.

A.I.2.(5).

11 th March, 1944
(G. WILKINSON)
for Wing Commander.

## DISTRIBUTION:

AIR MINISTRY:
D.G.I.S
D.A.T.

1
D.O.R.
D. of Tels. $\quad 1$
D. of RADAR 1
D. of I. (R)
D.D.I.2. 1
D.S.M. 1
D.M.O. 1
D.D.I.3. 1
D.D.I.4. 1
D.D. Tels. 1
A.D.I. (Sc.) 1
A.D.I. (K) 1

$\frac{\text { HOME COMMLNDS }}{\text { No. } 80 \text { Wing }}$ (Cont'd.)
No. 26 Group
1
W/Cdr. Whitchead, C.D.S., R. i.. F.,

West Drayton.
A.O.C. No. 100 Group 1
H. Q. , A. E. A. F.

ADIIRALIY:
D.N.I.

No...D.
Sigs. Div.
The Captain H.M. Signals School, ( $\mathrm{c} / 0 \mathrm{G} \cdot \mathrm{P} \cdot 0$. Iondon)

WAR OFFICE:
II.I. 8.
M.I.10. 11

## OVERSEAS COMUANDS:

```
F.Q.,M.N.N.F. Capture
    Intelligence.
H.Q.,M.A.N.F. Rear
    A-2 H. Q.,N.N. \. F. (i.dv.) 1
    C.I.O.,R.A.F.,M.E. 1
    C.I.O.,R.S.F.,Malta 1
A.H. Q.,siden. }
C.S.I.O., M......F.,
            ilgiers.
    S/Lar. Collcy . 1
    H.Q.,N.S.N.F.,T.A.F. 
    H.Q.,MT.A.N.F.,S.A.F. 
    H. \Omega.,IT.s.N.F.,C.N.T. (1
No.30 Nission (Russia)
Australian Rescarch Board
B.R.M. Washington
B.A.C., Washington
        1
    Roar - 
        1
```




